3 research outputs found

    The Calbindin-D28k binding site on inositol monophosphatase may allow inhibition independent of the lithium site of action

    Get PDF
    Among numerous reported biochemical effects the lithium-inhibitable enzyme inositol-monophosphatase (IMPase) remains a viable target for lithium's therapeutic mechanism of action. Calbindin-D28k (calbindin) interacts with IMPase enhancing its activity. In the present study in silico modeling of IMPase-calbindin binding using the program MolFit indicated that the 55-66 amino acid segment of IMPase anchors calbindin via Lys59 and Lys61 with a glutamate in between (Lys-Glu-Lys motif). The model further suggested that the Lys-Glu-Lys motif interacts with residues Asp24 and Asp26 of calbindin. Indeed, we found that differently from wildtype calbindin, IMPase was not activated by mutated calbindin in which Asp24 and Asp26 were replaced by alanine. Calbindin's effect was significantly reduced by a peptide with the sequence of amino acids 58-63 of IMPase (peptide 1) and by six amino-acid peptides including at least part of the Lys-Glu-Lys motif. The three amino-acid peptide Lys-Glu-Lys or five amino-acid peptides containing this motif were ineffective. Intracerebroventricular administration of peptide 1 resulted in a significant antidepressant-like reduced immobility in the Porsolt forced swim test (FST) compared with mice treated with a scrambled peptide or artificial cerebrospinal fluid. Based on the sequence of peptide 1, and to potentially increase the peptide's stability, cyclic and linear pre-cyclic analog peptides were synthesized. One cyclic and one linear pre-cyclic analog peptides exhibited an inhibitory effect on calbindin-activated brain IMPase activity in vitro. These findings may lead to the development of molecules capable of inhibiting IMPase activity at an alternative site than that of lithium

    Dual array EEG-fMRI : An approach for motion artifact suppression in EEG recorded simultaneously with fMRI

    Get PDF
    Objective: Although simultaneous recording of EEG and MRI has gained increasing popularity in recent years, the extent of its clinical use remains limited by various technical challenges. Motion interference is one of the major challenges in EEG-fMRI. Here we present an approach which reduces its impact with the aid of an MR compatible dual-array EEG (daEEG) in which the EEG itself is used both as a brain signal recorder and a motion sensor. Methods: We implemented two arrays of EEG electrodes organized into two sets of nearly orthogonally intersecting wire bundles. The EEG was recorded using referential amplifiers inside a 3 T MR-scanner. Virtual bipolar measurements were taken both along bundles (creating a small wire loop and therefore minimizing artifact) and across bundles (creating a large wire loop and therefore maximizing artifact). Independent component analysis (ICA) was applied. The resulting ICA components were classified into brain signal and noise using three criteria: 1) degree of two-dimensional spatial correlation between ICA coefficients along bundles and across bundles; 2) amplitude along bundles vs. across bundles; 3) correlation with ECG. The components which passed the criteria set were transformed back to the channel space. Motion artifact suppression and the ability to detect interictal epileptic spikes following daEEG and Optimal Basis Set (OBS) procedures were compared in 10 patients with epilepsy. Results: The SNR achieved by daEEG was 11.05 +/- 3.10 and by OBS was 8.25 +/- 1.01 (p <0.00001). In 9 of 10 patients, more spikes were detected after daEEG than after OBS (p <0.05). Significance: daEEG improves signal quality in EEG-fMRI recordings, expanding its clinical and research potential. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe
    corecore